QUNIS

6. QUNIS DAY 31. AUGUST 2018 OVB MEDIENFORUM, ROSENHEIM

Agenda

		DIGITAL ///
10.00	DIGITAL POWER LIVE Begrüßung durch Hermann Hebben und Steffen Vierkorn POWER	
10.30	Cleveres Datenmanagement im Zeitalter von Digitalisierungsinitiativen: Agile Transformation von klassischen BI-Systemen zu Data-Lake-Konzepten! Steffen Vierkorn	
11.30	TRACK I Bl und Data Warehouse Excellence	TRACK II Die analytische Evolution – es geht weiter!
11.30	Smart die Cloud nutzen – Ausgewählte Cloud-Services für den Einsatz in BI-Szenarien. Andy Löwen	Al als Enabler für digitale Geschäftsmodelle – Internet of Things zum Anfassen! Nico Damm
12.00	MITTAGSPAUSE	
13.00	QUNIS Automation Engine – Standardisierung und Automatisierung in der Data-Warehouse-Entwicklung. Raphael Henneke	Die Evolution im Controlling – Vom BI Power User zum Data-Scientisten. Dr. Franziska Deutschmann
13.30	Agiles Projektmanagement – Live-Präsentation der QUNIS-Methodik und -Werkzeuge. Ralph Gattinger	Artifical Intelligence zum Anfassen – Live-Präsentation ausgewählter Anwendungsfälle! Ilona Tag
14.00	BI, Big Data und AI brauchen Regeln – Data Governance leicht und verständlich. Annefried Simoneit	Analytics in der Cloud – Zum Mitmachen und selbst Erleben! Nico Damm
14.30	KAFEEPAUSE	
15.00	Herausforderung Digitalisierung – Wie Viessmann die Anforderungen an das Datenmanagement mit einem Data Lake managt. Marc Saure, Kundenvortrag Viessmann	Advanced Analytics in Tax – Praxisbeispiele von AI im Steuerbereich. Vanessa Just, Kundenvortrag WTS AI
15.30	Microsoft Power BI in Action – Live-Präsentation. Patrick Eisner	Ein Blick in das QUNIS Innovation Lab – Einblicke in die Research-Arbeit der QUNIS. Steffen Vierkorn
16.30	Digitalisierung, die uns bewegt! Zusammenfassung des Tages und A	usblick von Hermann Hebben und Steffen Vierkorn

Vorreiter zur Cloud

Ansprüche und Fragestellungen

- Kernkompetenzen und Know-how im eigenen Team / Synergien
 - Welches Know-how ist vorhanden und welches wird benötigt → Skill-Matrix
 - Aus- und Weiterbildung
 - Ressourcen
- Betrieb
 - Intern, Provider oder Managed Service
- Verfügbarkeit (HA)
- Flexibilität und Skalierbarkeit
 - Wie flexibel können Komponenten getauscht oder abgelöst werden
 - Wie skalierbar ist die Infrastruktur
- Kosten
- Zugang für den Anwender von intern und extern
- Methodik und Regelwerk für die Entwicklung des Data Warehouse
- Hardware-Sizing
 - Virtuell oder physikalisch
 - SMP oder MPP

Vorreiter zur Cloud

Vorteile

Kostensenkung

Konzentration auf Kernkompetenzen

Steigerung der Qualität

Zeitersparnis / freie Resourcen

Zugriff auf Experten Know-How

Nachteile

Abhängigkeit

erhöhte Kommunikation

Kontrollabgabe

mangelnde Fortbildung der eigene Mitarbeiter

Einblicke in sensible Daten

Vorreiter zur Cloud

Vorteile

Weniger physikalische Systeme: Kosten- und Energieeinsparung

Geringerer Platzbedarf

Schnellere Server-Provisionierung

Lebenszeit alter Applikationen verlängern

VM-Managment (Clone, Snapshot, Live-Migration)

Erhöhte Verfügbarkeit für alle VM

Nachteile

benötigt leistungsstarke Server

Lizensierung

Programme, die nicht auf virtuellen Maschinen laufen

höhere Latenzzeiten bei unausgeglichen Ressourcen

Ausfall aller VM wenn Host nicht verfügbar ist

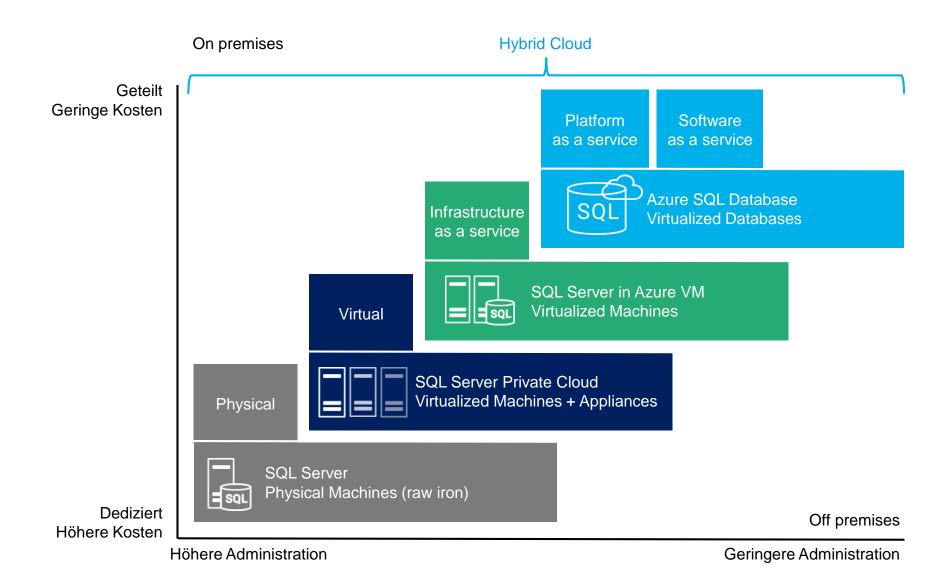
Hardware-Unabhängigkeit

Chance und Risiko Cloud

Cloud ist die Bereitstellung von Infrastruktur (Rechenleistung, Speicherkapazität, Software) als Dienstleistung über das Internet. Die verfügbaren Dienstleistungen umfassen neben Infrastruktur auch Plattformen und Software.

Servicemodelle:

bleibt kompatibel


- Infrastructure as a Service (z.B. Virtuelle Maschine)
- Platform <u>as</u> <u>a</u> <u>Service</u> (z.B. Datenbank)

in der Regel höhere Sicherheitsstandards

<u>S</u>oftware <u>as a Service</u> (z.B. Email-Programm)

Vorteile	Nachteile
zeitnahe Skalierung	Abhängigkeit
gesteigerte Agilität der IT	Datenschutz
geringere Administration	mangelnde Fortbildung der eigenen Mitarbeiter
spart Kosten & reduziert Investitionen	schnelle Internetanbindung
Spielraum für Innovationen	

Infrastructure as a Service (IaaS) vs. Platform as a Service (PaaS)

Welche Komponenten benötigt eine BI-Lösung

Welche Komponenten können für eine BI-Lösung relevant sein?

Überblick

Hardware

Relationale Datenbanken

Multidimensionale Datenbanken (Cubes)

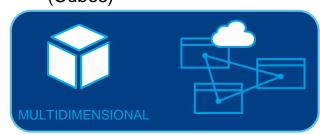
ETL-Werkzeug

Frontend

Benutzer- und Rechteverwaltung

Welche Komponenten sind für eine BI-Lösung in Azure verfügbar

Hardware

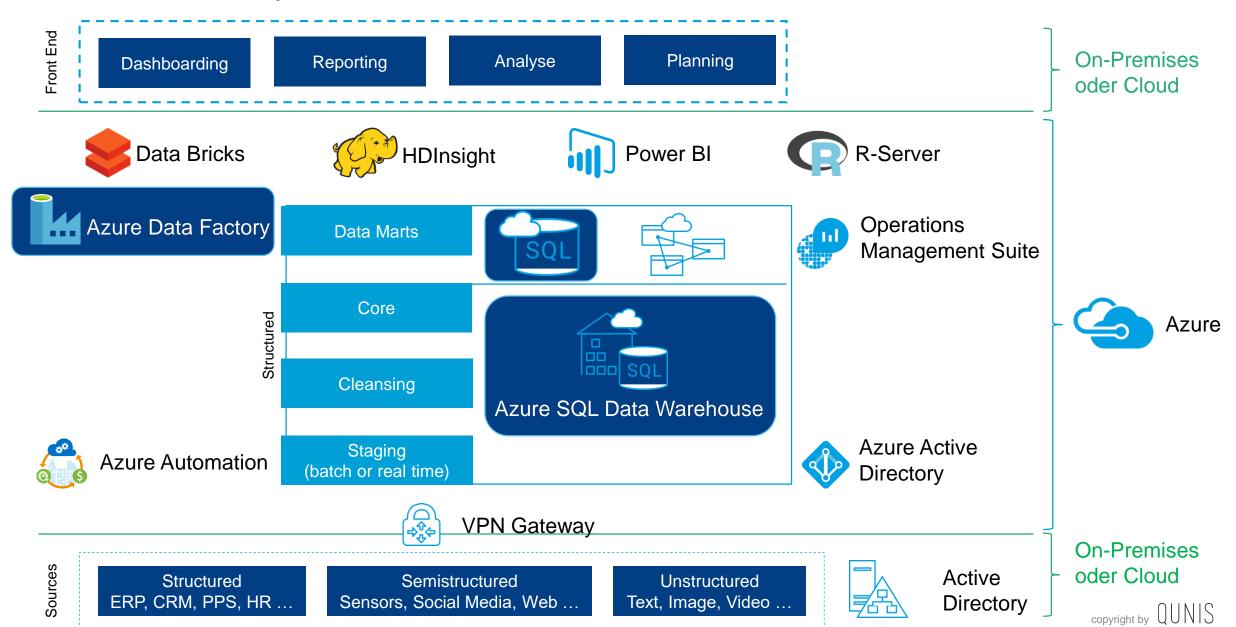


Relationale Datenbanken

Multidimensionale Datenbanken (Cubes)

ETL-Werkzeug

Frontend



Benutzer- und Rechteverwaltung

Data-Lake Beispielarchitektur

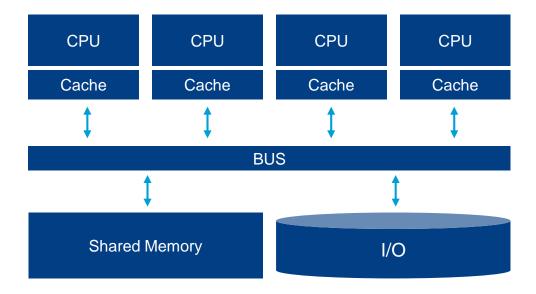
Ausgewählte Azure Komponenten

Azure SQL Database

Azure SQL Database

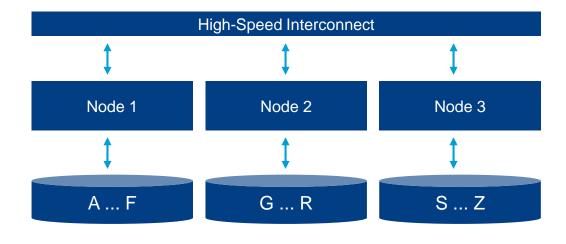
- Verfügbar seit 2010
- Database-as-a-Service (DBaaS)
- Fällt damit in die Kategorie PaaS
- Vergleichsprodukt: Amazon's RDS, Google Cloud SQL oder Cloud Spanner
- Nutzt statt SQL-Server die Version 12 der Azure SQL Database
- Optimizer versteht T-SQL, ein Migration von SQL-Server auf Azure SQL Database problemlos möglich
- Basiert auf standardisierter Hardware und Software, die Microsoft gehört und von Microsoft gehostet und verwaltet wird.
- Azure SQL Database wird Kunden nicht mit einer Lizenz, sondern als Dienst verkauft.

Ausgewählte Azure Komponenten

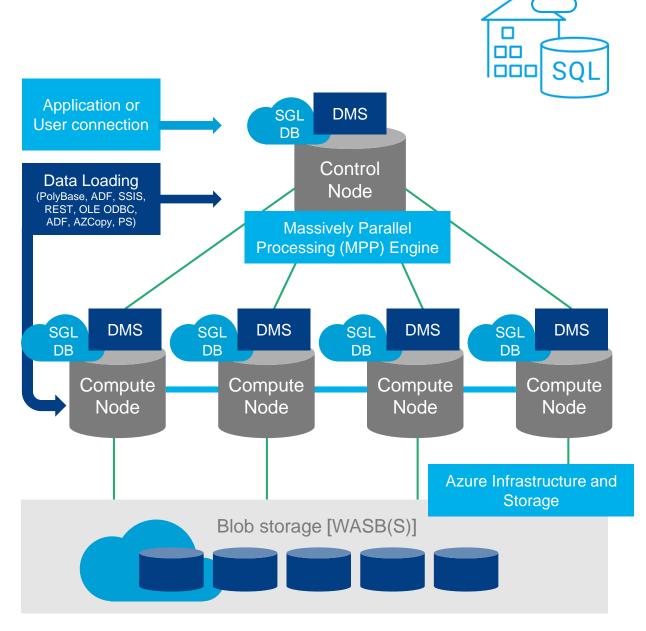

Azure SQL Data Warehouse

Datenbankarchitekturen: SMP vs. MPP

Kurzüberblick


SMP (Symmetrisches Multiprozessorsystem)

- Ein Server, in dem sich alle CPU's den verfügbaren Hauptspeicher und Datenspeicher teilen müssen
- Eine SQL-Operation (SELECT, INSERT, ...) wird auf einem Server ausgeführt
- Der Flaschenhals in der Performance liegt meist beim Disk-IO und nicht der CPU

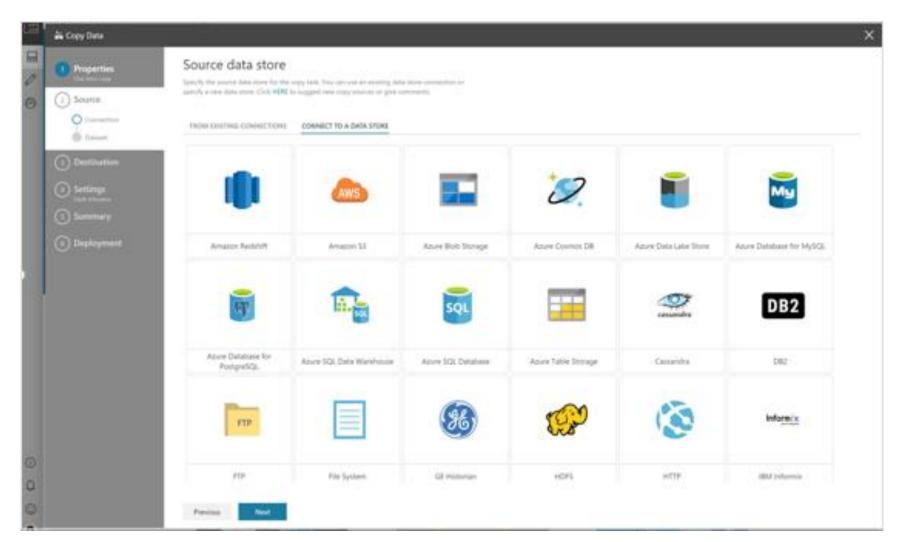

MPP (Massively Parallel Processing)

- Eine MPP Architektur besteht aus mehreren Servern (Compute-Nodes),
 die virtuell zu einem zusammengefasst werden
- Ein Server wie bei SMP entspricht in MPP einem Node
- Eine SQL-Operation (SELECT, INSERT, ...) wird über mehrere Nodes verteilt und später wieder zusammengeführt

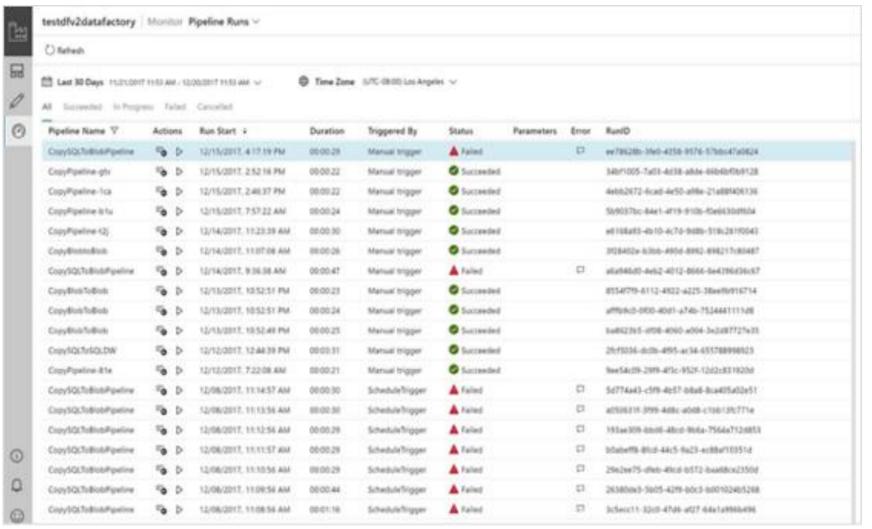
Azure SQL Data Warehouse

- Verfügbar ab ca. Juli 2016
- Data Warehouse as a Service (DWaaS)
- Fällt damit in die Kategorie PaaS
- Vergleichsprodukt: Amazon's Redshift, Google Big Query
- Basiert auf der gleichen Grundtechnologie wie die Analytics Plattform System (APS / PDW)
- Nutzt statt SQL-Server die Version 12 der Azure SQL Database
- Compute ist nun vom Storage getrennt, so dass diese unabhängig skaliert werden können
- Azure SQL Data Warehouse kann mit APS kombiniert werden, um z.B. sensible Daten on-premises zu halten während nicht sensible Daten in der Cloud liegen

Ausgewählte Azure Komponenten Azure Data Factory

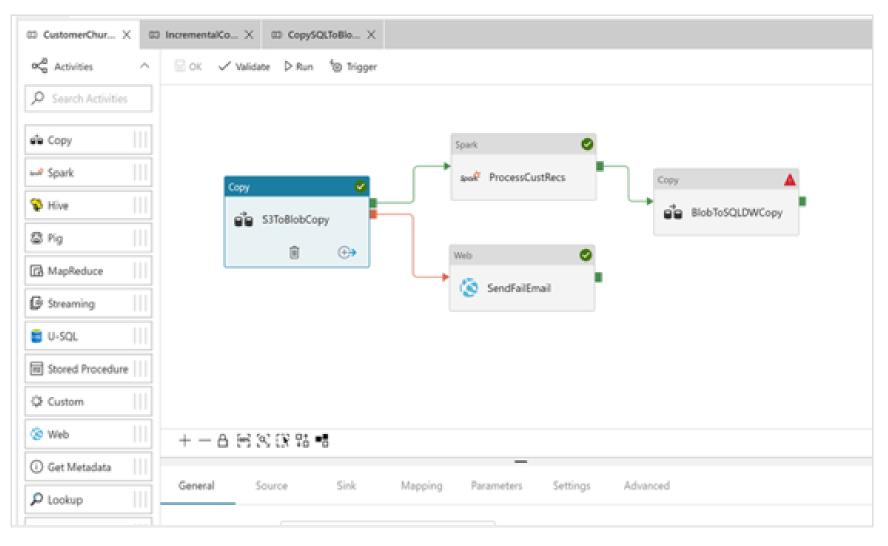

Serverloser hybrider Datenintegrationsdienst (ETL) in Azure

- Graphische Benutzeroberfläche in Azure, um Datenpipelines per Drag & Drop zu erstellen oder zu verwalten
- Bereits mehr als 70 verfügbare Datenquellenkonnektoren z.B. Azure Data Services, AWS S3 und Redshift, Google BigQuery, SAP HANA,
 Oracle, DB2, MongoDB, etc.
- Bereitstellung von SSIS-Paketen in Azure
- Zugriff auf Datenquellen in der Cloud oder On-Premises
- Skalierbar
- Einbindung von benutzerdefiniertem Code in verschiedenen Programmiersprachen (Python, .Net, ARM)


Datenintegration mit Azure Data Factory

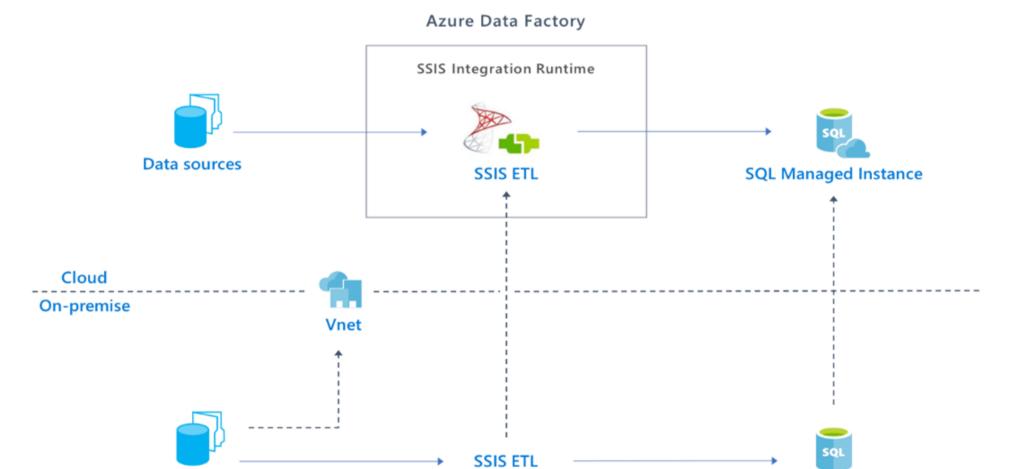
Schritt 1: Zugreifen auf Daten und Erfassen von Daten mit integrierten Konnektoren

Datenintegration mit Azure Data Factory


Schritt 2: Erstellen skalierbarer Datenflüsse mit einer codefreien Benutzeroberfläche oder Schreiben von eigenem Code

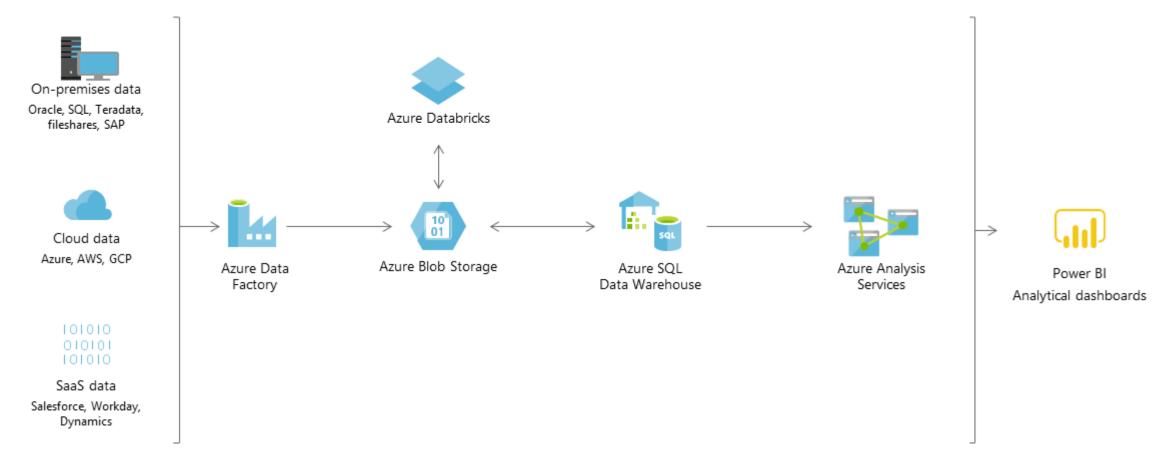
Datenintegration mit Azure Data Factory

Schritt 3: Planen, Ausführen und Überwachen Ihrer Pipelines



SSIS-Paketausführung in Azure

Data sources



SQL Server

Orchestrierung mit Azure Data Factory

QUNIS

WWW.QUNIS.DE

Andy Löwen
Senior Consultant, QUNIS GmbH

Phone: +49 176 114802 16

E-Mail: andy.loewen@qunis.de

